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Summary. We investigated empirical data for the vapor pressure (154�T�196 K) and the heat

capacity (12.52�T�189.78 K) of solid carbon dioxide. A computer algebra system (CAS) was used

for all calculations. From the numerical point of view, we have adopted a cubic piecewise polynomial

representation for the heat capacity and reached an excellent agreement between the available empiri-

cal data and the calculated ones. Furthermore, we have obtained values for the vapor pressure and heat

of sublimation at temperatures below 195 right down to 0 K. The theoretical key prerequisites are: 1)

Determination of the heat of sublimation of 26250 J �mol�1 at vanishing temperature and 2) Elabora-

tion of a ‘linearized’ vapor pressure equation that includes all the relevant properties of the gaseous and

solid phases. It is shown that: 1) The empirical vapor pressure equation derived by Giauque & Egan

remains valid below the assumed lower limit of 154 K (a similar argument holds for Antoine’s

equation), 2) The heat of sublimation reaches its maximum value of 27211 J �mol�1 at 58.829 K

and 3) The vapor behaves as a (polyatomic) ideal gas even for temperatures below 150 K.

Keywords. Thermodynamics; Phase transitions; Computer chemistry; Spline.

Introduction

Because of the intensive use of carbon dioxide in industry and research [1], it has
become necessary to determine its thermodynamic, physical, and chemical proper-
ties over an extended range of temperatures. Significant effort has been deployed to
build up a database through observations and theoretical calculations [2–13]. From
the former point of view, we mention the accurate measurements due to Giauque
and Egan [3] and from the latter point of view, the derivation based on the classical
version of the theory of lattice dynamics, which predicts the heat capacities of
carbon dioxide in the range of temperatures between 15 and 50 K [5], in very good
agreement with those obtained through observations [3].

However, such a good agreement is still out of reach for some other properties
of carbon dioxide due to difficulties from both experimental and theoretical points
of view. For instance, the empirical determination of the latent heat of sublima-
tion at low temperatures remains a major obstacle because of the difficulty in

� E-mail: azreg@baskent.edu.tr



eliminating the superheating of the gas [3]. Similarly, by way of example, the
Lagrangian classical treatment of the two-dimensional rigid rotor is intractable
and the theoretical determination of the heat capacity, mentioned above, had been
made possible only at sufficiently low temperatures (T<50 K) when the harmonic
approximation is valid [6]. With that said, much work has to be done in order to
determine further properties of carbon dioxide particularly at low temperatures,
such properties are still missing in the best compendia.

We will exploit the data available in Ref. [3], which we refer to as G&E, and
show that it is possible to evaluate the heat of sublimation L (�subH) and vapor
pressure p at temperatures 5�T�195 K. A key prerequisite is the determination
of the heat of sublimation at T ¼ 0 K (L(0)¼ "0). Stull calculated an average value
of L by the method of least squares using the vapor pressure data measured by
different workers [4] and obtained a value of 26.3 kJ �mol�1 (6286 cal �mol�1)
for 139�T�195 K [10]. However, the literature citations listed in Ref. [4] show
that Stull did not extract data from G&E, which are even more accurate and include
data concerning the heat capacity of solid carbon dioxide and other data that
could be used to obtain L at different temperatures. By contrast, G&E have eval-
uated L at 194.67 K using partly their measured data and available data for L
at lower temperatures [2]. They evaluated the integral of the heat capacity of the
solid (change in the enthalpy) graphically from a smooth curve through their
measured data and obtained a value for L that is merely 10 cal �mol�1 higher than
their measured value Lmeasð194:67Þ ¼ 6030� 5 cal �mol�1 (25230� 21 J �mol�1).
They also evaluated the entropies of the gas and solid at 194.67 K and reached an
excellent agreement between experimental data and statistics (the experimental and
spectroscopic values of the entropy of the gas sg they obtained were 47.59 and
47.55 cal �K�1 �mol�1, respectively, constituting a proof of the third law [14]).
However, this cumbersome procedure had prevented them from carrying out a
systematic evaluation of the latent heat and entropy at temperatures covering the
range of their measured data. Furthermore, this procedure (the graphical evalua-
tion) adds a human error, which is an unknown factor.

In this paper we will carry out a systematic evaluation of the afore-mentioned
physical quantities on a more extended range of temperatures than that of G&E
using 1) a computer algebra system (CAS), which eliminates the human error and
allows an excellent adjustment of the parameters in order to achieve a better
accuracy, as well as 2) an established formula for the vapor pressure. It will be
shown below that our reevaluated value of Lð194:67Þ is 6030.4 cal �mol�1

(25231 J �mol�1). The data for the relevant quantities will be tabulated at tem-
peratures incremented by 5 K and plotted. Moreover, the generating codes will be
provided, which allow the evaluation of any quantity at any given temperature
within minutes of time. In this work, we will be relying on measured data by
different workers and on some empirical formulas derived by graphical interpo-
lation. Since some of these data are provided without accuracy and some other
lack accuracy due to personal error, it will be difficult to assign accuracy to our
results, as is the case in most compendia. Some values of p (in Torr) will be
given with one significant digit while other values will be given with 2 or 3
significant digits. The values of L (of the order of 26000 J �mol�1) will be given
with five digits without decimals, assuming an error not higher than 0.35%. The
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accuracy of the results for p and L can be read by comparing with the available
measured data.

Results and Discussions

Heat of Sublimation at T ¼ 0

Throughout this paper, we use the units and symbols recommended by the Inter-
national Union of Pure and Applied Chemistry (IUPAC) [15]. The energy is given
in J and in cal¼ 4.184 J, the pressure in Torr, and the temperature in K. Since the
original data were given in calories, we perform our evaluations in this unit, taking
R ¼ 1:98724 cal �K�1 �mol�1, then convert the results to joules.

The G&E heat capacity measurements, shown in the codes (Appendix), extend
from 15.52 to 189.78 K. On such a large interval there is no best equation that will
represent the data [14]. G&E worked on a smooth curve through the data but did not
describe it. In order to represent the data, the alternative is to subdivide the interval
into sufficiently small intervals and represent the data by a polynomial on each sub-
interval in such a way that the polynomial pieces blend smoothly making a spline [16].

MATLAB provides spline curve via the command spline ðx; yÞ (see
Appendix). It returns the piecewise polynomial form of the cubic spline interpolant
with the not-a-knot end conditions, having two continuous derivatives and breaks
at all interior data sites except for the leftmost and the rightmost one. The values of
the spline at the breaks spline ðx;y;xðiÞÞ coincide with the data values y ðiÞ.
Cubic splines are more attractive for interpolation purposes than higher-order poly-
nomials [16].

We will deal with molar physical quantities labeled by the subscripts s and g to
differentiate between the solid and gaseous phases. We denote by L the latent heat
of sublimation and by ui, ai, �i, vi, hi, si (i ¼ s, g), the internal energy, free energy,
chemical potential, volume, enthalpy, and entropy, respectively. We take the zero
of rotational energy to be that of the J ¼ 0 state and the zero of vibrational energy
to be that of the ground state, meaning that a molecule at rest in the gas has an
energy of zero at vanishing temperature (ugð0Þ ¼ 0). Let "0 be the heat of sub-
limation at T ¼ 0 which is, according to our energy convention, the binding energy
of the particles of the solid (usð0Þ ¼ asð0Þ ¼ hsð0Þ ¼ �sð0Þ ¼ �"0<0).

The excellent agreement between the experimental and spectroscopic values of
sg at 194.67 K is due to G&E accurate measurements and to the success of Debye’s
theory at low temperaturesa. G&E used Debye’s formula to evaluate ss for
0�T�15 K. However, they did not explain their choice for the Debye temperature
�D. In this work, the energy and entropy of the solid for temperatures below
15.52 K are extrapolated by substitution of the Debye heat capacity formula. More-
over, we will rely on Suzuki and Schnepp’s assertion that the molar heat capacities
of the solid carbon dioxide (cv and cp) are equal within an error of 10�5 per cent for
such low temperatures [5]. Finally, we fix �D by equating the heat capacity due to
Debye with that measured by G&E at 15.52 K (0.606 cal �K�1 �mol�1). Solving the
equation using a CAS we find �D ¼ 139:59 K.

a The more advanced theory elaborated in Ref. [5] reduces at low temperatures to Debye’s theory
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The MATLAB codes provided in the appendix are split into three parts. In Part(I),
cd represents the Debye heat capacity. The vectors t and cp show the temperature
data sites used by G&E (15.52! 189.78 K) and the corresponding measured heat
capacities (0.606! 13.05 cal �K�1 �mol�1), respectively. These G&E data sites are
extended by the temperature vector u and the corresponding Debye heat capacity
vector v, respectively. The last two lines evaluate, at the temperature vector Tn, the
spline through the extended data sites (t, cp), the integrals

Ð T
0
cp dT 0 ¼ hsðTÞ þ "0 ¼

�hsðTÞ (vector I) and
Ð T

0
ðcp=T 0Þ dT 0 ¼ ssðTÞ (vector J), with T 2Tn.

The heat of sublimation "0 is obtained upon solving the equation �g ¼ �s at any
given temperature for which the measured L is known. The lead we had followed
seeking for higher accuracy led us to select the value of L ¼ 6190 cal �mol�1 at
170 K [2, 3]. We find "0 ¼ 6273:4 cal �mol�1 and the calculation is shown below.

With �g ¼ ag þ pvg & �s ¼ hs � Tss, the equation �g ¼ �s reduces to
"0 ¼ �hs � Tss � ag � pvg. Upon solving the Clapeyron equation for pvg we
obtain pvg ¼ ½L � ðT d ln p=dTÞ�1� þ pvs, and finally Eq. (1).

"0 ¼ �hs � Tss � ag �
L

Tðd ln p=dTÞ � pvs ð1Þ

We will make use of the G&E empirical equation (Eq. (2)) to evaluate p and
d ln p=dT at 170 K.

pG&EðTorrÞ ¼ 10 exp½ða1=TÞ þ b1 þ c1T þ d1 T
2� ð154�T�196 KÞ ð2Þ

By using a1 ¼ �1354:210�ln 10, b1 ¼ 8:69903�ln 10, c1 ¼ 0:001588�ln 10,
d1 ¼ �4:5107�10�6�ln 10, we obtain pð170Þ ¼ 74:59 Torr. Since vs ¼
25:55 cm3 �mol�1 [5], the last term pvs ¼ 0:06 cal �mol�1 is neglected. The term
including L equals 6190=(170�0.108021)¼ 337.08 cal �mol�1, and �hsð170Þ
and ssð170Þ are the 85000th components of the vectors I and J: �hsð170Þ�
170�ss ð170Þ ¼ Ið85000Þ � 170�Jð85000Þ ¼ �1227:8 cal �mol�1.

Now, we make our first hypothesis concerning the vapor. We assume the valid-
ity of the first order virial expansion neglecting thus the higher order terms, and this
has always been done for carbon dioxide [3] at such low temperatures. We have
then Eq. (3), thereby we can show that the term ag in Eq. (1) is the free energy of an

idealb gas evaluated at the point ðT ; pÞ ¼ ð170 K; 74:59 TorrÞ.
pvg ¼ RT þ BðTÞ p ð3Þ

For the molecule of CO2 we have ag ¼ at þ ar þ av, which is the sum of the
translational, rotational, and four vibrational contributions av ¼ 2av1 þ av2 þ av3

[17, 18]. With our choice of the origin of the energy, these contributions can
be written as shown by Eq. (4) with C ¼ 7:575455�105 in SI units
(¼ ð2�m=h2Þ3=2

k5=2) and �r ¼ 0:561, �v1 ¼ 954, �v2 ¼ 1890, �v3 ¼ 3360 K.

at ¼ �RT lnðCe T5=2=pÞ; ar ¼ Rf�T ln½T=ð2 �rÞ� þ �r=3g;
avi ¼ RT ln½1 � expð��vi=TÞ�; ðT � 5 KÞ and ði ¼ 1�3Þ ð4Þ

We have then agð170Þ ¼ �7838:2 cal �mol�1 leading with the previously eval-
uated terms to "0 ¼ 6273:4 cal �mol�1.

b In fact, we can show that the correction for gas imperfection to �g is under the above assumption

pvg � RT , implying ag ¼ ag ideal
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Vapor Pressure

From now on we will assume "0 ¼ 6274 cal �mol�1 (26250 J �mol�1). Upon substi-
tuting Eqs. (3) and (4) into "0 ¼ �hs � Tss � ag � pvg (�g ¼ �s) and rearranging

the terms we obtain Eq. (5) where Zv ¼ Zv1
2Zv2Zv3, Zvi ¼ ½1 � expð��vi=TÞ��1

ði ¼ 1�3Þ, andc Zr ¼ ½T þ �r=3� � ð2 �rÞ�1
.

p ¼ CT5=2Zr Zv expf½�hs � Tss � "0 � BðTÞp�=RTg ð5Þ
Assuming that BðTÞ follows Berthelot’s equation (Eq. (6)) [13, 14] where

‘2 ¼ 6�304.12 K2 and, in order to express BðTÞ p in cal �mol�1, we take
‘1 ¼ 9�304.1=(128�72.8�760) K=Torr, we have solved numerically both Eq. (5)
and its linearized form and the results coincide up to an insignificant error.

BðTÞ p ¼ R‘1½1 � ð‘2=T
2Þ� pðTorrÞ ð6Þ

Upon substituting exp½�BðTÞp=RT� ¼ 1 � BðTÞp=RT into Eq. (5), the linear-
ized equation yields Eq. (7) where pideal (in Torr) is the corresponding pressure for
an ideal gas (Eq. (8)).

pTWðTorrÞ ¼ pideal

f1 þ ‘1½1 � ð‘2=T2Þ�pideal=Tg
ðT � 5 KÞ ð7Þ

pidealðTorrÞ ¼ ð760=101325ÞC T5=2ZrZv expf½�hs � Tss � "0�=RTg ð8Þ
Table 1 and Fig. 1 compare values of the vapor pressure derived in this work

(TW) with those of G&E (Eqs. (7) and (2)). We have evaluated Eq. (2) at tem-
peratures below the left-end point 154 K, as shown in Table 1, and the formula
remains applicable, however, for temperatures above 110 K; below this temperature,
Eq. (2) diverges from Eq. (7). The third column (A) of Table 1 shows values of the
vapor pressure evaluated using Antoine’s equation [14]. The constants A1 ¼ 6:81228,
B1 ¼ 1301:679, and C1 ¼ �3:494 of Antoine’s equation have been evaluated by
the National Institute of Standards and Technology (NIST) [10] from G&E data.
The equation writes as shown by Eq. (9) where �A1A1 ¼ A1 ln 10 and �B1B1 ¼ B1 ln 10.

pAðTorrÞ ¼ ð760=1:01325Þ expf �A1A1 � ½ �B1B1=ðA1T þ C1Þ�g ð154:26�T�195:89 KÞ
ð9Þ

From Table 1 we establish the following results. Equations (2) and (9) are still valid
beyond their assumed ranges of validity; the ranges are now extended right down
below their left-end points to include temperatures above 110 and 65 K, respectively.
Moreover, the vapor behaves as a polyatomic ideal gas for temperatures below 155 K.

An instance of calculation is provided in the codes given in Part(II) of the
appendix, which show the evaluation of the ideal-gas pressure Eq. (8) and the
real-gas pressure Eq. (7) at 160, 180, and 194.67 K. The evaluated pressures are
represented by the 3-vectors PI and PTW, respectively.

c Because of the symmetry requirements of the total wave function under the interchange of the two

identical nuclei [17, 18], Zr is coupled with the nuclear partition function and the above expression of

Zr no longer holds for T of the order of �r; however, as T increases the separation of the two partition

functions becomes possible [17]; the above formula for Zr has been derived using the Euler-

MacLaurin expansion and can be used safely for T of the order of 5 K and higher values
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Table 1. Vapor pressure data. The values of the pressure shown in italics are evaluated at temperatures

beyond the assumed range of validity of the corresponding formula; the table compares our results

(TW: this work Eq. (7)) with those of G&E (Eq. (2)) [3] and Antoine’s equation (Eq. (9)) [10];

nomenclature: NA¼ not applicable; conventions: 1) E–n¼ 10�n; 2) a letter C shown on the right

of a p-value indicates that a small correction for gas imperfection has been added; if, otherwise, the

values of p with and without correction are equal (p ¼ pideal); since the G&E and A data are empirical,

a letter C has been added to all of them including those values evaluated beyond the assumed range

of validity

T=K pTW=Torr pG&E=Torr pA=Torr T=K pTW=Torr pG&E=Torr pA=Torr

65 3.4E–12 NA 3.3E–12(C) 135 0.6 0.6(C) 0.6(C)

70 1.2E–10 NA 1.3E–10(C) 140 1.4 1.4(C) 1.4(C)

75 2.8E–9 NA 3.0E–9(C) 145 3.1 3.1(C) 3.1(C)

80 4.2E–8 NA 4.7E–8(C) 150 6.4 6.4(C) 6.3(C)

85 4.7E–7 NA 5.2E–7(C) 155 12.5 12.6(C) 12.5(C)

90 3.9E–6 NA 4.3E–6(C) 160 23.6 23.6(C) 23.5(C)

95 2.6E–5 NA 2.8E–5(C) 165 42.8(C) 42.7(C) 42.4(C)

100 1.4E–4 NA 1.5E–4(C) 170 74.6(C) 74.6(C) 74.1(C)

105 6.8E–4 NA 7.3E–4(C) 175 126(C) 126(C) 125(C)

110 0.003 0.003(C) 0.003(C) 180 206(C) 207(C) 205(C)

115 0.01 0.01(C) 0.01(C) 185 329(C) 330(C) 328(C)

120 0.03 0.03(C) 0.03(C) 190 511(C) 513(C) 511(C)

125 0.09 0.09(C) 0.09(C) 195 776(C) 781(C) 777(C)

130 0.2 0.2(C) 0.2(C)

Fig. 1. The vapor pressure vs. the temperature; solid line: this work (TW) plotted for 110�T�195,

dotted line: G&E plotted for 155�T�196
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Heat of Sublimation

Combining different thermodynamic entities we establish Eq. (10) where the last
two terms add a correction for gas imperfection, pðTÞ is the vapor pressure and
hg is the ideal-gas enthalpy given by hg ¼ R½ð7T=2Þ � ð�r=3Þ� � T2½dðav=TÞ=dT �
(Eq. (4)).

LðTÞ ¼ "0 ��hsðTÞ þ hgðTÞ þ ½BðTÞ � ðT dB=dTÞ� pðTÞ ð10Þ
Looking for extreme values we can first ignore the correction for gas imperfec-

tion then justify it later. We have solved graphically the equation dL=dT ¼ 0
(cp s ¼ cp g) and obtained the values 57.829 K for T and 6503.58 cal �mol�1 for L
as shown in Fig. 2. We will assume Lmax ¼ 6503:6 cal �mol�1 (27211 J �mol�1).
Tables 2 and 1, however, show that at 57.829 K the vapor behaves as an ideal gas,
and this justifies the omission of the correction terms in dL=dT ¼ 0.

Substituting Eq. (6) into Eq. (10), this latter splits into two equations (Eqs. (11)
and (12)) whether we evaluate the vapor pressure using Eqs. (2) or (7).

LG&E ¼ "0 ��hsðTÞ þ hgðTÞ þR‘1½1� ð3‘2=T
2Þ�pG&E ð154�T�196 KÞ ð11Þ

LTW ¼ "0 ��hsðTÞ þ hgðTÞ þ R‘1½1 � ð3‘2=T
2Þ� pTW ðT � 5 KÞ ð12Þ

Equations (11) and (12) are plotted in Fig. 2. In the codes provided in Part(III) of
the appendix, we evaluate the r.h.s of Eq. (12) at 160, 180, and 194.67 K (3-vector
LTW). The value of the latent heat obtained at 194.67 K is 6030.4 cal �mol�1

Fig. 2. The heat of sublimation vs. the temperature; solid line: this work (TW) plotted using the

derived Eq. (12), dotted line: plotted using the same equation with pG&E, dash-dot line: arc of the

spline through the data (T ; LTW) and T ¼ 5nK (0�n�31, positive integer) shown in Table 2; this

arc extrapolates the solid line to temperatures below 5 K
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(25231 J �mol�1) or 6030.6 cal �mol�1 (25232 J �mol�1) whether we calculate the
r.h.s of Eqs. (12) or (11).

In concluding, it was of interest to further compare our results for the pressure
with those used by Stull [4] that, as already stated, are less accurate than G&E
values. At temperatures 138.8, 148.7, 153.6, 158.7 K, we read from Ref. [4] the
values 1, 5, 10, 20 Torr for the pressure, while our evaluated values (Eq. (7)) are
1.16, 5.30, 10.42, 20.12 Torr, respectively. Finally, values of the entropy of the solid
at the tabulated temperatures T ¼ 5jK (1� j�39, positive integer) form a sub-
vector of J (see Part(I) of the appendix) and are obtainable upon executing the
codes q ¼ 2500:2500:97500; JðqÞ. For instance, ss ð160Þ ¼ Jð80000Þ ¼
14:07, ss ð180Þ ¼ Jð90000Þ ¼ 15:50, and ss ð194 :67Þ ¼ Jð97335Þ ¼
16:52 cal �K�1 �mol�1 (58.87, 64.85, and 69.12 J �K�1 �mol�1, respectively).

Methods

Concerning the numerical approach, given the accurate data for the heat capacity at
constant pressure of carbon dioxide and some available data for the heat of sub-
limation, we employed the method of splines to generate and evaluate a smooth
curve representing the heat capacity data. Dealing with a large number of data

Table 2. Heat of sublimation data; the values of the heat of sublimation shown in italics are evaluated

at temperatures beyond the assumed range of validity of the corresponding formula; the table

compares our results (TW: this work; Eq. (12)) with those derived from Eq. (11) using G&E pressure

Eq. (2); nomenclature: NA¼ not applicable; convention: a letter C shown on the right of a L-value

indicates that a small correction for gas imperfection has been added; if, otherwise, the values of Lwith

and without correction are equal

T=K LTW=J �mol�1 LG&E=J �mol�1 T=K LTW=J �mol�1 LG&E=J �mol�1

0 26250 NA 100 26951 NA

5 26394 NA 105 26896 NA

10 26538 NA 110 26836 26836

15 26676 NA 115 26773 26773

20 26804 NA 120 26707 26707

25 26914 NA 125 26637 26637

30 27005 NA 130 26565 26565

35 27077 NA 135 26488 26488

40 27133 NA 140 26408 26408

45 27172 NA 145 26325 26325

50 27197 NA 150 26239(C) 26239(C)

55 27209 NA 155 26149(C) 26149(C)

60 27210 NA 160 26055(C) 26055(C)

65 27201 NA 165 25958(C) 25958(C)

70 27183 NA 170 25855(C) 25855(C)

75 27158 NA 175 25745(C) 25745(C)

80 27128 NA 180 25629(C) 25629(C)

85 27091 NA 185 25504(C) 25504(C)

90 27048 NA 190 25368(C) 25368(C)

95 27002 NA 195 25221(C) 25220(C)
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sites, we preferred to use cubic splines, which are more attractive for interpolation
purposes than higher-order polynomials [16]. Once the curve was set, we pro-
ceeded to the evaluation of the change of the enthalpy and entropy of the solid.
The evaluation of the relevant physical quantities concerning the vapor was rather
straightforward using appropriate formulas from the thermodynamic literature [17,
18]. We used MATLAB to execute the task and the calculated entities were used in
subsequent vapor pressure and heat of sublimation evaluations.

Now, concerning the theoretical approach, we mainly derived a formula for the
vapor pressure including a correction for gas imperfection and effects of internal
structure, as well as a formula for the heat of sublimation with similar intentions.

Appendix

This section is devoted to provide the main MATLAB codes, as a part of the numerical method,

leading to the results shown in this paper.

Part(I)

Part(I) shows the data sites used by G&E (15.52! 189.78 K) and (0.606! 13.05 cal �K�1 �mol�1).

We evaluate the spline through the extended data sites (t;cp), the integrals
Ð T

0
cp dT 0 ¼ hsðTÞ þ "0 ¼

�hsðTÞ (vector I), and
Ð T

0
ðcp=T 0Þ dT 0 ¼ ssðTÞ (vector J), with T 2Tn.

syms x z real;

f ¼ ð12=ðx^3ÞÞ�intððz^3Þ=ðexpðzÞ � 1Þ;z;0;xÞ;
g ¼ ð3�xÞ=ðexpðxÞ � 1Þ; A ¼ f� g; cd ¼ 3�1:98724�A;
u ¼ 0:01 : 0:01 : 15:25; xn ¼ 139:59:=u;

v ¼ realðdoubleðsubsðcd;x;xnÞÞÞ; t ¼ ½0 u 15:52 17:30

19:05 21:15 23:25 25:64 27:72 29:92 32:79 35:99

39:43 43:19 47:62 52:11 56:17 60:86 61:26 66:24

71:22 76:47 81:94 87:45 92:71 97:93 103:26 108:56

113:91 119:24 124:58 130:18 135:74 141:14 146:48

151:67 156:72 162:00 167:62 173:36 179:12 184:58

189:78�; cp ¼ ½0 v 0:606 0:825 1:081 1:419 1:791

2:266 2:676 3:069 3:555 4:063 4:603 5:195 5:794

6:326 6:765 7:269 7:302 7:707 8:047 8:370 8:703

8:984 9:189 9:421 9:671 9:893 10:07 10:27 10:44

10:69 10:88 11:08 11:27 11:45 11:64 11:84 12:07

12:32 12:57 12:82 13:05�;
Tn ¼ 0:001 : 0:002 : 196:001; spcp ¼ splineðt;cp;TnÞ;
I ¼ 0:002�cumsumðspcpÞ; J ¼ 0:002�cumsumðspcp:=TnÞ;

Part(II)

We evaluate the ideal-gas and real-gas pressures (Eqs. (8) and (7)) at 160, 180, and 194.67 K. The

evaluated pressures are represented by the 3-vectors PI and PTW, respectively.

Eps ¼ 6274; T ¼ ½159:999 179:999 194:669�;
m ¼ ½80000 90000 97335�; ms ¼ IðmÞ � ðT:�JðmÞÞ;
PC ¼ 7:575455�ð10^5Þ; l1 ¼ 9�304:1=ð128�72:8�760Þ;
l2 ¼ 6�ð304:1^2Þ; S ¼ expðms:=ð1:98724�TÞÞ;
Ztr ¼ ð1=ð2�0:561ÞÞ�ððT:^ð7=2ÞÞ:�
ðonesðsizeðTÞÞ þ ðð0:561=3Þ:=TÞÞÞ;
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Zv ¼ ð1:=ððonesðsizeðTÞÞ � expð�954:=TÞÞ:^2ÞÞ:�
ð1:=ðonesðsizeðTÞÞ � expð�1890:=TÞÞÞ:�
ð1:=ðonesðsizeðTÞÞ � expð�3360:=TÞÞÞ;
PI ¼ ðð760=101325Þ�PCÞ:�ððZtr:�ZvÞ:�
ðS:�expð�Eps:=ð1:98742�TÞÞÞÞ;
V ¼ ðl1�ððonesðsizeðTÞÞ � ðl2:=ðT:^2ÞÞÞ:�ðPI:=TÞÞÞþ
onesðsizeðTÞÞ; PTW ¼ PI:=V;

T ¼ 160 180 194:67

PI ¼ 23:604 204:845 739:817

PTW ¼ 23:632 206:308 754:942

Part(III)

We evaluate the heat of sublimation (Eq. (12)) at 160, 180, and 194.67 K. The output is the 3-vector

LTW.

IT ¼ onesðsizeðTÞÞ; h1 ¼ 954:=ðexpð954:=TÞ � ITÞ;
h2 ¼ 1890:=ðexpð1890:=TÞ � ITÞ;
h3 ¼ 3360:=ðexpð3360:=TÞ � ITÞ;
hv ¼ 1:98724�ðð2�h1Þ þ h2þ h3Þ;
hg ¼ ðð3:5�1:98724Þ:�TÞ þ hv� ððð1:98724�0:561Þ=3Þ�ITÞ;
GI ¼ ð1:98724�l1Þ:�ðIT� ðð3�l2Þ:=ðT:^2ÞÞÞ:�PTW;
LTW ¼ Eps� IðmÞ þ hgþ GI;

T ¼ 160 180 194:67

LTWðcal=molÞ ¼ 6227:4 6125:5 6030:4

LTWðJ=molÞ ¼ 26055 25629 25231
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